Name:
Urban pluvial flood simulations – Lucerne (ETH Zurich)
Description:
DEM, rainfall patterns, and peak flood water depth rasters for three catchment areas (744, luzern, portugal). Includes synthetic design-storm scenarios, selected real-event outputs for Portugal, and trained machine-learning models based on the simulation results.
Total files:
123
File size:
744,192 KB

πŸ“ Dataset

πŸ“ inputs
πŸ“ terrain
πŸ“„ 744_dem.asc.gz
πŸ“„ luzern_dem.asc.gz
πŸ“„ portugal_dem.asc.gz

πŸ“ rainfall
πŸ“ synthetic
πŸ“„ 744_rain_pattern_str.txt
πŸ“„ luzern_rain_pattern_str.txt
πŸ“„ portugal_rain_pattern_str.txt

πŸ“ real
πŸ“„ portugal_rain_pattern_real.txt

πŸ“ metadata
πŸ“„ metadata.xlsx

πŸ“ models
πŸ“ ml

πŸ“ code
πŸ“„ featureExtraction.py
πŸ“„ interactive_predictor.ipynb
πŸ“„ load_data.py
πŸ“„ lossPloter.py
πŸ“„ nn.py
πŸ“„ nn_model.py
πŸ“„ nn_model_new.py
πŸ“„ tensorflow_parser.py
πŸ“„ train_and_test_256.py
πŸ“„ train_and_test_256_plot_histogram.py

πŸ“ trained_models
πŸ“ coimbra_256_features
πŸ“„ -39.data-00000-of-00001
πŸ“„ -39.index
πŸ“„ -39.meta
πŸ“„ -79.data-00000-of-00001
πŸ“„ -79.index
πŸ“„ -79.meta
πŸ“„ checkpoint

πŸ“ luzern_256_features
πŸ“„ -39.data-00000-of-00001
πŸ“„ -39.index
πŸ“„ -39.meta
πŸ“„ -79.data-00000-of-00001
πŸ“„ -79.index
πŸ“„ -79.meta
πŸ“„ checkpoint

πŸ“ luzern_256_neg_pos
πŸ“„ -39.data-00000-of-00001
πŸ“„ -39.index
πŸ“„ -39.meta
πŸ“„ -79.data-00000-of-00001
πŸ“„ -79.index
πŸ“„ -79.meta
πŸ“„ checkpoint

πŸ“ luzern_256_zero_one
πŸ“„ -39.data-00000-of-00001
πŸ“„ -39.index
πŸ“„ -39.meta
πŸ“„ -79.data-00000-of-00001
πŸ“„ -79.index
πŸ“„ -79.meta
πŸ“„ checkpoint

πŸ“ zurich_256_features
πŸ“„ -39.data-00000-of-00001
πŸ“„ -39.index
πŸ“„ -39.meta
πŸ“„ -79.data-00000-of-00001
πŸ“„ -79.index
πŸ“„ -79.meta
πŸ“„ checkpoint

πŸ“ outputs
πŸ“ hydraulic

πŸ“ real
πŸ“ portugal
πŸ“ waterdepth
πŸ“„ 09-06-06_WDraster.asc
πŸ“„ 21-09-08_WDraster.asc
πŸ“„ 29-04-11_WDraster.asc

πŸ“ synthetic

πŸ“ 744
πŸ“ waterdepth
πŸ“„ 744_tr2_WDraster_PEAK.asc.gz
πŸ“„ 744_tr2-2_WDraster_PEAK.asc.gz
πŸ“„ 744_tr2-3_WDraster_PEAK.asc.gz
πŸ“„ 744_tr5_WDraster_PEAK.asc.gz
πŸ“„ 744_tr5-2_WDraster_PEAK.asc.gz
πŸ“„ 744_tr5-3_WDraster_PEAK.asc.gz
πŸ“„ 744_tr10_WDraster_PEAK.asc.gz
πŸ“„ 744_tr10-2_WDraster_PEAK.asc.gz
πŸ“„ 744_tr10-3_WDraster_PEAK.asc.gz
πŸ“„ 744_tr20_WDraster_PEAK.asc.gz
πŸ“„ 744_tr20-2_WDraster_PEAK.asc.gz
πŸ“„ 744_tr20-3_WDraster_PEAK.asc.gz
πŸ“„ 744_tr50_WDraster_PEAK.asc.gz
πŸ“„ 744_tr50-2_WDraster_PEAK.asc.gz
πŸ“„ 744_tr50-3_WDraster_PEAK.asc.gz
πŸ“„ 744_tr100_WDraster_PEAK.asc.gz
πŸ“„ 744_tr100-2_WDraster_PEAK.asc.gz
πŸ“„ 744_tr100-3_WDraster_PEAK.asc.gz

πŸ“ luzern
πŸ“ waterdepth
πŸ“„ luzern_tr2_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr2-2_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr2-3_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr5_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr5-2_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr5-3_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr10_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr10-2_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr10-3_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr20_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr20-2_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr20-3_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr50_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr50-2_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr50-3_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr100_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr100-2_WDraster_PEAK.asc.gz
πŸ“„ luzern_tr100-3_WDraster_PEAK.asc.gz

πŸ“ portugal
πŸ“ waterdepth
πŸ“„ portugal_tr2_WDraster.asc.gz
πŸ“„ portugal_tr2-2_WDraster.asc.gz
πŸ“„ portugal_tr2-3_WDraster.asc.gz
πŸ“„ portugal_tr5_WDraster.asc.gz
πŸ“„ portugal_tr5-2_WDraster.asc.gz
πŸ“„ portugal_tr5-3_WDraster.asc.gz
πŸ“„ portugal_tr10_WDraster.asc.gz
πŸ“„ portugal_tr10-2_WDraster.asc.gz
πŸ“„ portugal_tr10-3_WDraster.asc.gz
πŸ“„ portugal_tr20_WDraster.asc.gz
πŸ“„ portugal_tr20-2_WDraster.asc.gz
πŸ“„ portugal_tr20-3_WDraster.asc.gz
πŸ“„ portugal_tr50_WDraster.asc.gz
πŸ“„ portugal_tr50-2_WDraster.asc.gz
πŸ“„ portugal_tr50-3_WDraster.asc.gz
πŸ“„ portugal_tr100_WDraster.asc.gz
πŸ“„ portugal_tr100-2_WDraster.asc.gz
πŸ“„ portugal_tr100-3_WDraster.asc.gz

πŸ“ ml
πŸ“„ luzern_256_features_epoch_loss.csv
πŸ“„ luzern_256_features_batch_loss.csv
πŸ“„ zurich_256_features_epoch_loss.csv
πŸ“„ coimbra_256_features_epoch_loss.csv